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Positron Annihilation in Helium

Richard J. Drachman
National Aerocnautics and Space Administration
Laboratory for Theoretical Studies
Goddard Space Flight Center
Greenbelt, Maryland

The modified adiabatic scattering function previously used to compute
phase shifts for positron-helium scattering below the positronium threshold
is applied to the problem of annihilation in helium. A large enhancement factor
relative to the Dirac rate is found, varying with energy from 2.30 to 3.16.
The probability of finding the spectator electron in states of the He+ ion
other than the ground state is computed and found to be small but probably

observable.



I. Positron Scattering Function

We have previously discussed the adiabatic approximationl and applied it
to the problem of low energy positron-helium scai:tering.2 Let us now consider
its application to the computation of positron annihilation in helium.

The scattering wave function for a positron of momentum k has the form:

¥y (z1,12,%) = % (%) [+ Glgo,z) + 6(za,x)] o(zi,z2). (1)

Here X is the positron coordinate, and.gl,xg are the coordinates of the two
electrons, all measured from the helium nucleus. The function ¢ describes the
ground state of the helium atom. The asymptotic form of the function ¥ will
be correct if Xy = ei§.5 since the correlation function G vanishes for large
values of x, and the two electrons are assumed to be independently polarized.

Taking the positron interaction as perturbation

v 1 1
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one can evaluate G(r,x) correct to first order in V by the method of Dalgarno

3

and Iewis”. If we make the shielding approximation employed previously2

¢(g1,zp) = 18 expl-B(ratra)] (3)

the equation for G(g,x) becomes

go-=8-2[ - ] e T k]
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This is similar to the equation solved by Dalgarno and Lynn4 for the case of
hydrogen, and can be related to that result directly by making the change of
variables y = Br, 2z = BX. Then one finds that BGQz,z) satisfies the same

~ ~ ~ o ~
equation as does the function derived by Dalgarno and Lynnu, and can be taken
over from their work. They derived an expression, in elliptical coordinates,

which contains implicitly all terms in the Legendre polynomial expansion

(o]

G(z,‘%) =z gz(y,z) Pz(cos @), Lcos a = §+2]. (5)
£=0

Qur previous experiencel indicated that the monopole term in the expansion

gives excessive short-range attraction (correlation), and in the following it

will be completely suppressed. Then, in elliptical coordinates one has the

modified correlstion function for helium

1

-

G(z,g) =gt [F(Z,K,u) - J d(cosb) F(z,k,p)]

-1

BT F-Fo]. (6)

=

2t [y + (y2 + 22 - 2yz cos6)
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p=zt [y - (¥ + 22 + 2yz cos8) ], -l <u<=<1,
cos® = (1 + au) (A + u)-l,
Flz,\,u) = (0 + ) A+ [1+2427"] gn(1 + 1) + D(z,u), (7)

where D(z,u) = (L + z-l) [(Bi(-2[{1-p]) -4n(1-p)

~e"?%(Rilz (1)) -4nl1+0])],




Ei(-x) = - j e-t £t at,
X
and A=3 [(l+z)e-gz-l].

ITI. Annihilation Rate

The rate of annihilation of positrons in helium is given by the expression5
N =S e Nz, (8)

where r, is the classical electron radius e®/mc®, N is the number density of

atoms in the target gas, and Zk is an effective electron number given by the

expression

Zy = ﬂ.n dry dre dx | ¥ (gi,72,%) F [8(z1-x) + 6(z=-3)], (9)

and provides a measure of the probability that the positron and an electron
are at the same point in space. If one were to set V = 0, thereby reducing

the distortion of the atom as well as the positron scattering to zero, then

Y =9 IEE, (10)

Thus the effective electron number Z

5

e = 2, and the annihilation rate goes over

to the Dirac rate” which is the quantum electrodynamic result for free particles.

For our type of wave function,

3o =t [ g | ) F L0+ elgz))? + < 6>, (11)

where <> = jj dr; dr> ¢ Q ¢.
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The energy independent parts of Z‘k can be conveniently isolated by writing

Xk(gg) in a partial wave expansion
[

X (%) =z x * UL(x) Py (cos8) (2L + l)iLeiéL. (12)
¥ 1=0
Using -
o1KZ =z JL(kx) PL(cose) (2L + l)iL
L=0
one finds
‘[ a2 le(g'() [2 =I a |ei§.5 + (X.l.{.(‘}'() - eiE'?é) lz
swn[24) L+ 1) Pyl - )], (13)
L=0
and

32 = uT aze™®* 22 [(1+G[5,53 +<G2>:| {1+§ (2L+1)[B2 z U2 (%—z-}di(kz/s)}
0 L=0

(1k)

Thus, a rapidly converging series of energy-dependent corrections and a single
energy independent term together yield the effective electron number. The
functions UL are obtained numerically from the solutions discussed previously2

2

and have the asymptotic form

Up(x) = k" 'sin (kx -In /2 + 61,) -
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The problem thus requires the evaluation of <G> and c(z, 2 ) and the

numerical integration of Eq. (14). In elliptical coordinates, y =2 is equiva-
-~

lent toX =u =1, since y = z and cosé = 1. For these values

F(z,1,1) = 2A + [1 + 227 'A)4n2 (15)

1z Y tayz - e 2% (Bil22]-4m2)],

where 4n v = 0.5771...., Buler's constant.

The integral in Eq. (6) takes the form

1 1
3 J:?(cose) F(Z,K,u))d_u -0 7 A Jd(cose)
-1

3 1
+[1+ 22" %) fdx(x-l)Zn(1+x) + J du(1-u)d(z,pn). (16)
1 -1

Then, after performing the integrations, one obtains the result
G(z,z) = 87" {[1+z'l][zn oyz - Bi(-22) - 1/2z + e 2%(1+1/22)] -;} (17)
. 2

which approaches zero as z~ 0, confirming the removal of the short-range
parts of the correlation. Some numerical values of (1 + G)Z are shown in
Table I.

The remaining term required to evaluate the annihilation rate is <G=>

which has been evaluated numerically from the formula
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<@ = 8”7 [<F> - <F2>] . (18)

It also vanishes at 2 = O and decreases as 3-4 for large z. For B = 1.5992
it is also exhibited in Table I. In Fig. 1.and Table II the values of 3%, are shown over
the energy range from zero to the positronium threshold. These have been com- :
puted numerically, using one set of solutions to the scattering [B=l.5992,a=0]

discussed previouslyz, but including only the L = O part of the sum over partial

waves. We estimate that the neglect of L > O contributes an error of less than

2% to the annihilation rate, and the error vanishes for k — O. The rates

obtained are very high6, and exhibit considerable variation with energy, which

7

should soon be observable experimentally.

III. Excitation of the Residual Ion

Suppose that an electron is annihilated when the positron is at position
X- The annihilation takes place very rapidly compared with atomic times, and
so the subsequent behavior of the residual He+ ion can be treated by the sudden
approximation8. The probability that the He+ ion will be in the state whose

wave function is ¢n is then given by

P = [ax ey /) Jaxlent® F, , (19)

where a (x) = Jdg ¢§(£) ¥ (x,%,1). -
~¢

The denominator in Eq. (19) is ¢
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jj dr d£' %‘i’ﬁ(g,z’i,g')[; ¢n(£') ¢;‘1(~r) ‘i’k(gé,z_c,z), (20)

e

and since {(])n} is a complete set of cne-electron functions, closure can be

applied to the sum in Eq. (20). Thus

P =J dx | an(x) IZ/H dxdg | ¥, (x,x,r) i
= Jax |an(0) [/ 3 2,

and ZPn =1,
n

(21)

If the probability for exciting states other than the ground state is
not too small, there may be a possibility of observing the radiative de-
excitation of the residual He+ ion, following annihilation. A favorable
transition might be the 2p — ls ultraviolet line at 304 3\, and we now proceed
to compute its intensity, using the modified adiabatic wave function.

From Egqs. (1) and (19) one obtains

P, = 2(11Zk)'l Jda o2z I Y f [(1 + GE.‘E’E,])QH + Wn(Z)Jg

3 l/2 [ -Br
where Q= (83/m) /2 | ax e ¢ (z) (22)
1
= 3 /2 :
W(z) = (8%/m) 72 [ ar a(z,z) ealz).
For excitation to the 2p state of the ion Q‘n = 0 and only the dipole part

of G contributes to wh(z). This is obtained by inserting Eq. (5) into Eq. (4)

and yields
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gily,z) =877 {z-z [y + y2/2:| +Cy [e‘gy/gyz Lyt éy-z)] }

for y < gz
-1 -1 -2
= B {z+02[l+y‘ + Ay ]f
(23)
for y > z
where C; =% e-2z(l + i-l)z,
Cc=Cp-2z+3 (1-27%),
and then
-5 @ - —l
Wop(z) = 48 /Zjdyyse (148 ")y gily,z). (2k)

o}

The probability ng has been computed for the same parameters as before and

is found to be essentially independent of positron energy, (for L = O scatter-
ing) and equal to 0.82%. Thu; at least 0.82% of all annihilations should be
followed by the 2p - 1ls transition. In addition, however, the experimentally
observable radiation should include the effect of cascades from other states
which pass through the 2p state. S-states should dominate the cascade process.

For S-states, Wh = 0 since no monopole term is contained in G. The S-

state probabilities are

1
Pns - [l * R] Qnsz’

_ -2z 2 J‘ -2z 2
where R—J‘d‘%e |x£f<G>/dE_e |x1£|2[1+c-]_
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Invoking closure over S-states, one finds that P(all S) = [1+R]™ T = 99% where
R has been numerically evaluated, and proves to be essentially energy-indepen-
dent. Thus 99% of all annihilations give S-states of the ion, and 0.82% g0

to the 2p state, leaving a negligible fraction in the higher p or L > 1 states.
The partition among the various discrete S-states is then given by an. A

9

general formula due to Mittleman” is

Q.2 = (88/0)%(2-8)2(-2/n)" *(gaa/n)” @), (26)

which was used to prepare Table ITI, which also shows the branching ratioslo
to the 2p state. One finally finds that 1.2% of all annihilations should be
followed by the 2p - ls transition. In addition, if a sufficiently strong
electric field is applied to the target gas, the metastable 2s level will mix
with the 2p level™,and an increase in the 2p — 1ls transition rate to 5.2% of

the annihilation rate will occur, and should be observable.

IV. Discussion

We have presented above a calculation of the energy-dependent annihilation
rate of positrons incident on a helium target, as well as a prediction of the
intensity of the He+ ultraviolet radiation which is expected to follow the
annihilation. In this work s simple model wave function describes both pro-
cesses, as well as the elastic scattering. The predictions are thus not
expected to be exact, but previous experience has given some cause for optimism.

Nevertheless the results derived here must be used cautiously, as a guide
only, until such time as more accurate solutions of the positron-helium scatter-

ing problem become available. As an example, we may note that the value of
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the parameter B = 1.5992 used throughout has been chosen to produce agreement
with the long-range x* potentiallz, and thus does not necessarily represent
well some of the other properties of the system. In a somewhat different
context, Nﬁttlemang has used a five-term exponential approximation to describe
the helium atom wave function, and finds that a more accurate value of the 2s
excitation probability is 2.23%, rather than our 2.006. This agreement indi-
cates that our qualitative results should be used as preliminary estimates in

designing experiments, which may eventually test the future detailed theories.
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Table I. Numerical values of correlation functions required for the calculation

of the positron-helium annihilation rate » for full monopole suppression

and B = 1.5992.

z [1+ G(z,z)]? <@2>
0 1 0
0.5 1.886 .0230
1.0 ’ 2.733 0473
1.5 3.7 .0495
2.0 4.028 .0397
2.5 4.503 0282
3.0 14.900 .0188
3.5 5.241 .0123
L.o - 5.541 .0080
4.5 5.810 .0053
5.0 6.055 - .00%6




Table IT.

Effective electron number for annihilation at selected values of

incident positron energy.

The Dirac rate corresponds to ézk = 1.

Energy (eV) 27
o) 3.16
0.54 2.79
1.22 2.58
2.17 2.43
3.40 2.35
%.90 2.31
6.66 2.30
8.70 2.33

11.0 2.38

13.6 2.4k

17.8 2.54
»




Table IT. Population and branching ratios following annihilation. The pro-
bability for exciting the various S-states of He+ listed in column
1 are shown in column 2, and the fraction: of each which eventually
reaches the 2p state is shown in columm 3. [Cascades like 5s = Lp -
3s —= 2p are included, but are very small]. Column 4 gives the

observable population of the 2p state due to each S-state.

Contribution to

State Population Branching Ratio to 2p 2p Population

1s 95.34% 0 0

2s 2.00% 0 0

3s 0.30% 1 _ 308

bs 0.10% 0.58 .058%

5s 0.04c% 0.45 .022%

65 0.027% 0.43 .012%
Total = .39%




Figure Captions

Fig. 1. Effective electron number for annihilation versus incident positron

energy in eV. The Dirac rate corresponds to %/ Zk = 1.
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